S ep 2 00 6 VIRTUAL INTERSECTIONS ON THE QUOT SCHEME AND VAFA - INTRILIGATOR FORMULAS

نویسنده

  • DRAGOS OPREA
چکیده

We construct a virtual fundamental class on the Quot scheme parametrizing quotients of a trivial bundle on a smooth projective curve. We use the virtual localization formula to calculate virtual intersection numbers on Quot. As a consequence, we reprove the Vafa-Intriligator formula; our answer is valid even when the Quot scheme is badly behaved. More intersections of Vafa-Intriligator type are computed by the same method. Finally, we present an application to the non-vanishing of the Pontrjagin ring of the moduli space of bundles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A G ] 3 1 M ay 2 00 5 VIRTUAL INTERSECTIONS ON THE QUOT - SCHEME AND THEVAFA - INTRILIGATOR FORMULA

We construct a virtual fundamental class on the Quot scheme parametrizing quotients of a trivial bundle on a curve. We use the virtual localization formula to calculate virtual intersection numbers on Quot. As a consequence, we reprove the Vafa-Intriligator formula; our answer is valid even when the Quot scheme is badly behaved. More intersections are computed by the same method. Finally, we pr...

متن کامل

S 1 - fixed - points in hyper - Quot - schemes and an exact mirror formula for flag manifolds from the extended mirror principle diagram

In the series of work [L-L-Y1, III: Sec. 5.4] on mirror principle, two of the current authors (K.L. and S.-T.Y.) with Bong H. Lian developed a method to compute the integral ∫ X τe ∩ 1d for a flag manifold X = Fl r1, ..., rI (C ) via an extended mirror principle diagram. This integral determines the fundamental hypergeometric series HG[1](t) and is also related to the computation of the Gromov-...

متن کامل

Donaldson-Thomas invariants of Calabi-Yau threefolds

Gromov-Witten, Gopakumar-Vafa, and Donaldson-Thomas invariants of Calabi-Yau threefolds are compared. In certain situations, the Donaldson-Thomas invariants are very easy to handle, sometimes easier than the other invariants. This point is illustrated in several ways, especially by revisiting computations of Gopakumar-Vafa invariants by Katz, Klemm, and Vafa in a rigorous mathematical framework...

متن کامل

On Blowup Formulae for the S-duality Conjecture of Vafa and Witten

In [V-W], Vafa and Witten formulated some mathematical predictions about the Euler characteristics of instanton moduli spaces derived from the S-duality conjecture in physics (details will be given in section 3). From these mathematical predictions, a blowup formula was proposed based upon the work of Yoshioka [Yos]. Roughly speaking, the blowup formula says that there exists a universal relati...

متن کامل

. A G ] 9 J un 2 01 5 CURVE COUNTING ON K 3 × E , THE IGUSA CUSP FORM χ 10 , AND DESCENDENT INTEGRATION

Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the GromovWitten theory (in all curve classes) of the Calabi-Yau 3-fold S×E where E is an elliptic curve. In the primitive case, our conjecture is expressed in terms of the Igusa cusp form χ10 and matches a prediction via heterotic du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008